## **RESEARCH**



# Positive end-expiratory pressure impact on cardiac output and cerebral hemodynamics in newborns

Masashi Zuiki<sup>1,2</sup> · Akihiro Managi<sup>1</sup> · Kazunori Watanabe<sup>1</sup> · Norihiro Iwata<sup>1</sup> · Rika Mitsuno<sup>1</sup> · Madoka Konishi<sup>1</sup> · Akio Yamano<sup>1</sup> · Eisuke Ichise<sup>1</sup> · Kanae Hashiguchi<sup>1</sup> · Tatsuji Hasegawa<sup>1</sup> · Tomoko lehara<sup>1</sup>

Received: 6 July 2025 / Revised: 6 October 2025 / Accepted: 8 October 2025 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

#### **Abstract**

This study aimed to clarify the extrapulmonary effects of positive end-expiratory pressure (PEEP) in neonates using noninvasive monitoring techniques to monitor cardiac output (CO) and cerebral hemodynamics. This was a prospective, nonrandomized, consecutive enrollment, single-centre study. Newborns weighing  $\geq 1,000$  g admitted to the neonatal intensive care unit for invasive mechanical ventilation from April 2023 to December 2024 were included. PEEP levels increased sequentially to 5 cm  $H_2O$ , 7 cm $H_2O$ , and 10 cm  $H_2O$  or peak inspiratory pressure not exceeding 25 cm $H_2O$  (incremental phase) and then decreased to 5 cm  $H_2O$  by employing the reverse of the aforementioned procedure (decremental phase) while monitoring stroke volume (SV), CO, and cerebral hemodynamic indexes, including tissue haemoglobin oxygen saturation and total haemoglobin on term and preterm infants using the electrical cardiometry and near-infrared time-resolved spectroscopy. Throughout the procedure, fraction of inspired oxygen, inspiratory time, and tidal volume were maintained at baseline values determined before initiation. This study included 16 term infants (median gestational age: 38 [IQR, 38–39] weeks; median birth weight: 2,778 [IQR, 2,296–3,046] g) and 20 preterm infants (median gestational age: 31 [IQR, 30–33] weeks; median birth weight: 1,459 [IQR, 1,264–2,044] g). High PEEP significantly reduced SV and CO compared to mild PEEP in both term and preterm neonates. tNIRS-1 measurements remained stable throughout the procedure.

**Conclusion** PEEP levels used in this study reduced CO without affecting cerebral perfusion. Although clinically used PEEP levels have minimal impact on cerebral perfusion in newborns, high PEEP may decrease blood circulation to organs outside the brain.

## What is Known:

•Setting an appropriate positive end-expiratory pressure (PEEP) is a key component of ventilator management in newborns. PEEP influence extrapulmonary functions, including cardiac output (CO) and cerebral hemodynamics. However, limited research has explored these extrapulmonary effects of PEEP in neonates.

#### What is New:

• The PEEP levels used in this study reduced CO without affecting cerebral perfusion in newborns. Clinically used PEEP levels have minimal impact on cerebral perfusion in newborns. However, high PEEP may decrease blood circulation to organs outside the brain.

**Keywords** Cardiac output · Neonatal intensive care units · Positive pressure respiration · Near-infrared spectroscopy · Stroke volume

Communicated by Daniele De Luca.

Published online: 21 October 2025

Masashi Zuiki zuiki@koto.kpu-m.ac.jp

- Department of Paediatrics, Kyoto Prefectural University of Medicine, Kamigyoku, Kyoto, Japan
- Department of Paediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Kawaramachi-Hirokoji, Kamigyoku, Kyoto, Japan

# **Abbreviations**

CBV Cerebral blood volume CPP Cerebral perfusion pressure

CO Cardiac output

ELBWI Extremely low birth weight infant

ETCO<sub>2</sub> End-tidal carbon oxide F<sub>1</sub>O<sub>2</sub> Fraction of inspired oxygen HHb Deoxygenated haemoglobin

HR Heart rate

ICP Intracranial pressure



NICU Neonatal intensive care unit NIRS Near-infrared spectroscopy

TRS Near-infrared time-resolved spectroscopy

O<sub>2</sub>Hb Oxygenated haemoglobin PDA Patent ductus arteriosus

PEEP Positive end-expiratory pressure SpO<sub>2</sub> Percutaneous oxygen saturation

StO<sub>2</sub> Tissue haemoglobin oxygen saturation

 $\begin{array}{ll} SV & Stroke \ volume \\ tHb & Total \ haemoglobin \\ V_T & Tidal \ volume \end{array}$ 

## Introduction

Many newborns admitted to the neonatal intensive care unit (NICU) require ventilator support. Setting an appropriate positive end-expiratory pressure (PEEP) is a key component of ventilator management [1, 2]. Low PEEP induces alveolar collapse, particularly in preterm infants prone to surfactant deficiency, while high PEEP can cause overinflation, increasing the risk of air leaks such as pneumothorax and pulmonary interstitial emphysema. The aim of mechanical ventilation is to maintain acceptable blood gas levels while minimising lung injury, which can result from excessively high or low pressure delivery. However, determining the optimal PEEP level is challenging due to the difficulty of quantifying lung volumes at the bedside [3]. In addition to its pulmonary effects, PEEP may also influence extrapulmonary functions, including cardiac output (CO) and cerebral hemodynamics [4, 5]. However, there is limited research on the extrapulmonary effects of PEEP in neonates, with a small number of cohorts and inconclusive results.

Recently, various monitoring devices suitable for neonates have been developed. An electrical cardiometry is a noninvasive, continuous CO monitoring system that utilizes electrical velocimetry. Previous research in adults has demonstrated a clinically acceptable correlation between CO measurements obtained from this device and those derived from transesophageal Doppler echocardiography and thermodilution methods [6–9]. Additionally, several studies have supported its effectiveness in assessing CO in infants [10-12]. Near-infrared spectroscopy (NIRS) enables continuous, noninvasive measurement of tissue haemoglobin oxygen saturation (StO<sub>2</sub>) within a target tissue. More recently, near-infrared time-resolved spectroscopy (TRS) has been introduced as an advanced NIRS technique for clinical use. This method allows for the precise determination of absolute concentrations of oxygenated haemoglobin (O<sub>2</sub>Hb), deoxygenated haemoglobin (HHb), and total haemoglobin (tHb) concurrently with StO<sub>2</sub>. Furthermore, cerebral blood volume (CBV) can also be assessed using this approach [13]. Previous studies have been conducted utilizing TRS in neonates [14–16]. For example, Nakamura et al. reported that early postnatal elevations in CBV and cerebral StO<sub>2</sub> were predictive of poor outcomes in neonates with hypoxic-ischemic encephalopathy [14]. Another noninvasive method for assessing cerebral hemodynamics is measurement of superior vena cava flow; however, it presents certain limitations, including the challenge of continuous measurement and requirement for advanced technical expertise [17].

We hypothesised that elevated PEEP levels in neonates affect CO and cerebral perfusion. This study aimed to clarify the extrapulmonary effects of PEEP in neonates using non-invasive monitoring techniques.

# Materials and methods

# Study design and ethics

This is a prospective, nonrandomized, consecutive enrollment, single-centre study. This study was approved on March 22, 2023, by the Clinical Ethics Committee of the University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan (approval number: ERB-C-2794). Written informed consent was obtained from the legal guardians of each participant. The study was conducted in accordance with the Declaration of Helsinki and adhered to relevant guidelines and regulations.

Newborns admitted to the NICU from April 2023 to December 2024 were considered for inclusion (Fig. 1). The study focused on patients receiving invasive mechanical ventilation in synchronous intermittent mandatory ventilation mode. All participants were in stable condition, particularly regarding respiratory status, and were approved for inclusion by the attending medical staff. Exclusion criteria were extremely low birth weight infants (ELBWIs), congenital heart defects affecting systemic circulation (including symptomatic patent ductus arteriosus [PDA] and large patent foramen ovale [PFO]), cerebral anomalies such as hydrocephalus (including intraventricular haemorrhage), and infants who underwent therapeutic hypothermia.

# Noninvasive monitoring techniques

The AESCULON mini® (OSYPKA MEDICAL and Heiwa Bussan, Tokyo, Japan) device was used to evaluate the neonates' stroke volume (SV) and CO fluctuations during PEEP changes. Four surface electrodes were attached to the patients, one on the forehead, one on the left side of the neck, one on the left lower thorax, and one on the left thigh. A portable



European Journal of Pediatrics (2025) 184:710 Page 3 of 7 710

three-wavelength TRS system (tNIRS-1; Hamamatsu Photonics K.K., Hamamatsu, Japan) was used, with the probe affixed to the forehead. Light emission and detection optodes were positioned on the parietal area, 30 mm apart. The TRS system

utilises a time-correlated single-photon-counting method for detection, as previously described [15, 16, 18, 19]. The tHb,  $StO_2$ , and CBV were calculated as follows:

$$[tHb] = [O_2Hb] + [HHb]$$
 
$$StO_2(\%) = [O_2Hb]/[tHb] \times 100$$
 
$$CBV \ (ml/100g \ brain) = [tHb] \times MW_{Hb} \times 10 - 6/(Hb \times 10^{-2} \times D_t \times 10)$$

The square brackets denote the Hb concentration ( $\mu$ M). MW<sub>Hb</sub> is the molecular weight of Hb (64,500), Hb is the blood Hb concentration (g/dl) and D<sub>t</sub> is the brain tissue density (1.05 g/ml).

# Study protocol

To clarify the extrapulmonary effects of PEEP in neonates, PEEP levels were modified according to the following protocol while monitoring CO, SV, heart rate (HR), StO<sub>2</sub>, O<sub>2</sub>Hb and HHb using the AESCULON mini® and tNIRS-1. Throughout the procedure, fraction of inspired oxygen ( $F_1O_2$ ), inspiratory time, and respiratory rate were maintained at baseline values determined before initiation. Ventilator settings were adjusted to a fixed tidal volume (V<sub>T</sub>) of 5–7 mL/kg based on predicted body weight, with a volume guarantee feature. End-tidal carbon dioxide

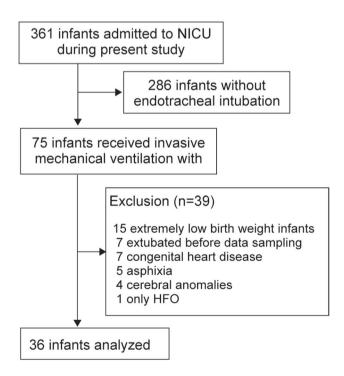



Fig. 1 Flow diagram showing the number of included infants

(ETCO<sub>2</sub>) and percutaneous oxygen saturation (SpO<sub>2</sub>) were continuously monitored. In cases where FiO<sub>2</sub> is below 0.3 and the respiratory status is sufficiently stable to contemplate extubation and PDA and PFO flow did not affect circulation, PEEP was sustained at 5 cmH<sub>2</sub>O (mild level) for 15–20 min. It was then incrementally increased every 10 min to 7 cmH<sub>2</sub>O (moderate level) and 10 cm H<sub>2</sub>O or peak inspiratory pressure not exceeding 25 cmH<sub>2</sub>O (high level) (incremental phase). After a stabilisation period of 10 min, PEEP was sequentially decreased from high to moderate, then to mild levels (decremental phase). Mean values of measurements recorded each minute were calculated.

# Statistical analyses

Ventilator settings, vital signs, and AESCULON mini® and tNIRS-1 measurements were compared among the three PEEP levels (mild, moderate, and high) using Friedman's analysis of variance, with Bonferroni correction for multiple comparisons. All statistical analyses were performed using EZR software (Saitama Medical Centre, Jichi Medical University, Saitama, Japan).

## Results

This study included 16 term infants (median gestational age: 38 [IQR, 38–39] weeks; median birth weight: 2,778 [IQR, 2,296–3,046] g) and 20 preterm infants (median gestational age: 31 [IQR, 30–33] weeks; median birth weight: 1,459 [IQR, 1,264–2,044] g). The Apgar scores at 1 and 5 min were 5 [IQR, 3–7] and 7 [IQR, 6–8], respectively. The median number of days at measurement was 3 [IQR, 3–4] for term infants and 4 [IQR, 3–6] for preterm infants. The primary reasons for intubation were respiratory distress syndrome in 14 cases (39%), transient tachypnea of newborns in 9 cases (25%), meconium aspiration syndrome in 2 cases (6%), chylothorax in one case (3%) and surgery in 10 cases (28%) (Table 1). Furthermore, the



710 Page 4 of 7 European Journal of Pediatrics (2025) 184:710

number of patients who received catecholamines or sedatives is shown in Table 1.

Table 2 presents the measurement changes in term and preterm infants during the incremental phase.  $F_1O_2$  and  $V_T$  remained stable, while  $SpO_2$ ,  $ETCO_2$  and HR showed no variation. Increasing PEEP from mild to high

levels significantly reduced SV and CO in both term and preterm infants. Additionally, during the decremental phase, lowering PEEP facilitated the normalisation of SV and CO (Table 3). However, t-NIRS-1 measurements remained unchanged throughout the procedure (Tables 2 and 3).

**Table 1** Descriptive characteristics of the enrolled patients

| parameter                              | terminfants(n=16)   | preterm infants (n = 20)<br>31(30–33) |  |
|----------------------------------------|---------------------|---------------------------------------|--|
| Gestationalage, weeks                  | 38(38–39)           |                                       |  |
| Birthweight,g                          | 2,778 (2,296-3,046) | 1,459(1,264-2,044)                    |  |
| Male/Female,n                          | 7/9                 | 8/10                                  |  |
| Cesareansection,n(%)                   | 4(25)               | 18(90)                                |  |
| Twinbirth,n(%)                         | 0(0)                | 7(35)                                 |  |
| Apgarscoreat1min                       | 5(4–7)              | 5(3-6)                                |  |
| Apgarscoreat5min                       | 6(5–9)              | 7(7–8)                                |  |
| Surfactant administration,n (%)        | 0(0)                | 14(70)                                |  |
| Daysofmeasurements,days                | 3(3–4)              | 4(3–6)                                |  |
| Catecholamines use, n (%)              | 9 (56)              | 15 (75)                               |  |
| Administration of sedatives, n (%)     | 4 (25)              | 3 (15)                                |  |
| Reasonsofintubation                    |                     |                                       |  |
| Respiratory distress syndrome,n(%)     | 0 (0)               | 14(70)                                |  |
| Transient tachypnea of newborns, n (%) | 7 (44)              | 2 (10)                                |  |
| Meconium aspiration syndrome, n (%)    | 2 (13)              | 0 (0)                                 |  |
| Chylothorax, n (%)                     | 0 (0)               | 1 (5)                                 |  |
| Surgery, n(%)                          | 7(44)               | 3(15)                                 |  |

Values are represented as median (interquartile range) unless specified otherwise

Table 2 The influence of PEEP on incremental phase

| parameter                | term infants( $n = 16$ ) |                                 |                                    | preterminfants(n=20) |                                 |                                 |
|--------------------------|--------------------------|---------------------------------|------------------------------------|----------------------|---------------------------------|---------------------------------|
|                          | mild                     | moderate                        | high                               | mild                 | moderate                        | high                            |
| PEEP,cmH <sub>2</sub> O  | 5.0±0                    | $7.0 \pm 0^{\dagger\dagger}$    | $9.9 \pm 0.4^{\dagger\dagger}$     | 5.0±0                | $7.0 \pm 0^{\dagger\dagger}$    | $9.6 \pm 0.7^{\dagger\dagger}$  |
| PIP,cmH <sub>2</sub> O   | $15.6 \pm 2.1$           | $18.8 \pm 2.0^{\dagger\dagger}$ | $23.2 \pm 1.5^{\dagger\dagger}$    | $15.2 \pm 3.1$       | $19.6 \pm 3.3^{\dagger\dagger}$ | $23.6 \pm 2.7^{\dagger\dagger}$ |
| MAP,cmH <sub>2</sub> O   | $7.1 \pm 0.6$            | $9.3 \pm 0.6^{\dagger\dagger}$  | $12.4 \pm 1.1^{\dagger\dagger}$    | $7.4 \pm 0.7$        | $9.9 \pm 1.1^{\dagger\dagger}$  | $12.9 \pm 0.8^{\dagger\dagger}$ |
| $F_IO_2$                 | 0.21(0.21-0.25)          | 0.21 (0.21-0.25)                | 0.21 (0.21-0.25)                   | 0.21(0.21-0.27)      | 0.21(0.21-0.27)                 | 0.21(0.21-0.27)                 |
| V <sub>T</sub> /kg,ml/kg | 5.2(5.0-6.2)             | 5.4 (5.0-6.4)                   | 5.2(5.0-6.5)                       | 5.4(5.1-5.6)         | 5.2(5.0-5.4)                    | 5.3(5.0-5.6)                    |
| $S_pO_2$ ,%              | $97.3 \pm 2.4$           | $97.6 \pm 2.4$                  | $98.6 \pm 1.6$                     | $96.4 \pm 3.0$       | $96.4 \pm 3.0$                  | $96.9 \pm 3.3$                  |
| ETCO <sub>2</sub> ,mmHg  | $40.0 \pm 3.9$           | $39.9 \pm 3.9$                  | $39.7 \pm 4.3$                     | $40.0 \pm 7.4$       | $39.5 \pm 7.5$                  | $37.5 \pm 5.9$                  |
| HR,/min                  | $123 \pm 11$             | $123 \pm 11$                    | $125 \pm 11$                       | $141 \pm 13$         | $143 \pm 13$                    | $144 \pm 14$                    |
| SV,ml/kg                 | 1.99(1.82-2.16)          | 1.96 (1.82–2.17)                | $1.85(1.63-2.01)^{\dagger\dagger}$ | 1.64(1.56-2.04)      | $1.57(1.51-1.97)^{\dagger}$     | $1.50(1.44-1.77)^{\dagger}$     |
| CO,ml/kg/min             | 238(209-283)             | 237(204-273)                    | $224(198-264)^{\dagger\dagger}$    | 242(233–278)         | $234(229-259)^{\dagger\dagger}$ | $222(212-256)^{\dagger\dagger}$ |
| StO <sub>2</sub> ,%      | 64(60–66)                | 63(60–65)                       | 63(61–65)                          | 65(64–67)            | 66(63–67)                       | 67(63–69)                       |
| tHb,µmmol/L              | 47(41–58)                | 47(42–58)                       | 48(42–58)                          | 51(48-55)            | 51(48-55)                       | 51(47-54)                       |
| CBV,ml/100g brain        | 2.1(1.7-2.7)             | 2.2(1.8–2.7)                    | 2.1(1.8–2.7)                       | 2.3(2.1–2.5)         | 2.3(2.1–2.5)                    | 2.3(2.0-2.5)                    |

Values are represented as mean  $\pm$  standard deviation or median (interquartile range) unless specified otherwise. *CBV*, cerebral blood volume; *CO*, cardiac output; ETCO<sub>2</sub>, end-tidal carbon oxide; FIO<sub>2</sub>, fraction of inspired oxygen; *HR*, heart rate; *MAP*, mean airway pressure; PEEP, positive end-expiratory pressure; *PIP*, positive inspiratory pressure; *SV*, stroke volume; SpO<sub>2</sub>, percutaneous oxygen saturation; StO<sub>2</sub>, tissue hemoglobin oxygen saturation; tHB, total hemoglobin;  $V_T$ , tidal volume. The difference among the groups was tested for significance with Friedman's analysis of variance after bonferoni adjusted.  $\dagger$  <.05 versus mild;  $\dagger$  <.01 versus mild



**Table 3** The influence of PEEP on incremental phase

| parameter                 | term                   | infants (n=16)                |                                | preterm infants (n=20) |                                |                                |
|---------------------------|------------------------|-------------------------------|--------------------------------|------------------------|--------------------------------|--------------------------------|
|                           | High                   | moderate                      | mild                           | High                   | moderate                       | mild                           |
| PEEP, cmH <sub>2</sub> O  | $9.9 \pm 0.4$          | 7.0 ± 0††                     | 5.0 ± 0††                      | $9.6 \pm 0.7$          | 7.0±0††                        | 5.0 ± 0††                      |
| PIP, cmH <sub>2</sub> O   | 23.2±1.5               | 16.6 ±2.2††                   | $16.0 \pm 1.8 \dagger \dagger$ | $23.6 \pm 2.7$         | $18.2 \pm 3.6 \dagger \dagger$ | $14.2 \pm 2.8 \dagger \dagger$ |
| MAP, cmH <sub>2</sub> O   | 12.5±1.0               | $9.0 \pm 1.0 \dagger \dagger$ | $7.1 \pm 0.5 \dagger \dagger$  | $12.9 \pm 0.8$         | $9.8 \pm 1.4 \dagger \dagger$  | $7.2 \pm 0.7 \dagger \dagger$  |
| $FIO_2$                   | 0.21 (0.21-0.25.21.25) | 0.21 (0.21-0.25.21.25)        | 0.21 (0.21 - 0.25)             | 0.21 (0.21 - 0.27)     | 0.21 (0.21 - 0.27)             | 0.21 (0.21 - 0.27)             |
| V <sub>T</sub> /kg, ml/kg | 5.2 (5.0-6.5.0.5)      | 5.2 (5.0-6.4.0.4)             | 5.2 (5.0 - 6.3)                | 5.3 (5.0 - 5.6)        | 5.3 (5.0 - 5.7)                | 5.3 (5.1 -5.6)                 |
| $\mathrm{SpO}_2,~\%$      | 98.6±1.6               | $98.2 \pm 2.3$                | $97.3 \pm 2.3$                 | $96.9 \pm 3.3$         | $97.6 \pm 2.6$                 | 97.4±2.3                       |
| ETCO <sub>2</sub> , mmHg  | 39.1±3.7               | $39.9 \pm 3.9$                | 40.7±6.3                       | $38.6 \pm 7.2$         | $39.1 \pm 7.4$                 | 37.8±5.2                       |
| HR,/min                   | $125 \pm 11$           | $123 \pm 12$                  | 123 ±11                        | $144 \pm 14$           | $141 \pm 13$                   | $139 \pm 14$                   |
| SV, ml/kg                 | 1.84 (1.55–1.97.55.97) | 1.96 (1.76 -2.10)†            | 1.99 (1.82- 2.16)††            | 1.53 (1.40 - 1.74)     | 1.58(1.53 -1.87)††             | 1.63 (1.58 -1.97)††            |
| CO, ml/kg/min             | 223 (193 -259)         | 232 (192 -274)†               | 238 (209- 283)††               | 214 (207 - 249)        | 228 (218 -259)†                | 233 (223-259)†                 |
| StO <sub>2</sub> , %      | 64 (60-65)             | 62 (59-65)                    | 64 (60 - 66)                   | 66 (62 - 70)           | 67 (63 - 71)                   | 68 (63-70)                     |
| tHb, μmmol/L              | 50 (45-59)             | 47 (42- 58)                   | 47 (41 - 58)                   | 51 (46 - 54)           | 51 (46 -53)                    | 50 (47–53)                     |
| CBV, ml/100g brain        | 2.3 (1.8–2.7.8.7)      | 2.2(1.8 -2.7)                 | 2.1 (1.7 - 2.7)                | 2.3 (2.1- 2.4)         | 2.4 (2.1-2.4)                  | 2.3 (2.1–2.5.1.5)              |

Values are represented as mean $\pm$ standard deviation or median (interquartile range) unless specified otherwise. *CBV*, cerebral blood volume; *CO*, cardiac output; ETCO<sub>2</sub>, end-tidal carbon oxide; FIO<sub>2</sub>, fraction of inspired oxygen; *HR*, heart rate; *MAP*, mean airway pressure; *PEEP*, positive end-expiratory pressure; *PIP*, positive inspiratory pressure; SV, stroke volume; SpO<sub>2</sub>, percutaneous oxygen saturation; StO<sub>2</sub>, tissue hemoglobin oxygen saturation; *tHB*, total hemoglobin; V<sub>T</sub>, tidal volume. The difference among the groups was tested for significance with Friedman's analysis of variance after bonferoni adjusted.  $\dagger$  <.05 versus mild;  $\dagger$  †<.01 versus high

# Discussion

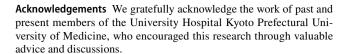
This study demonstrated that high PEEP in ventilated neonates reduces SV and CO, while the PEEP levels used in this study did not affect cerebral perfusion. In patients receiving mechanical ventilation, PEEP exerts a dual influence on circulation [20]. It can elevate pulmonary vascular resistance and right ventricular afterload due to increased transpulmonary pressure. Conversely, by increasing intrathoracic pressure, it may reduce cardiac preload [21, 22]. However, few studies have examined the impact of PEEP on systemic circulation in neonatal and pediatric populations. Recently, Karlsson et al. reported that increasing PEEP to 10 cmH<sub>2</sub>O in anesthetized children resulted in an 18% relative decrease in CO [23]. Similarly, Junqueira et al. found that high PEEP improved oxygen saturation but significantly reduced cardiac index in pediatric patients with acute respiratory distress syndrome [24]. Earlier studies on mechanically ventilated newborns with respiratory distress syndrome also showed that stepwise PEEP increases depressed CO [25]. Using a noninvasive approach, we confirmed that elevating PEEP from 5 cmH<sub>2</sub>O to 10 cmH<sub>2</sub>O reduced SV and CO in ventilated newborns, consistent with previous reports.

The effect of PEEP on cerebral hemodynamics remains inconclusive. Excessively elevated PEEP may reduce CPP due to decreased CO. Although few data exist describing the influence of PEEP on cerebral perfusion in patients without intracranial pathology, because ICP is not ordinarily monitored, if cerebral autoregulation functions normally, CBF is preserved. The use of noninvasive methods to assess ICP,

such as TCD and optic nerve sheath diameter measurement, indicates that a PEEP of 8 cm H<sub>2</sub>O exerts minimal impact on ICP [26, 27]. In addition, the influence of PEEP on cerebral perfusion and oxygenation has been investigated using TCD and NIRS in patients without brain injury undergoing elective surgical procedures. While opinions diverge on the impact of airway pressure on CBF [28, 29], it is generally accepted that local oxygenation is preserved during airway pressure application in healthy volunteers [30]. Conversely, in patients with brain injuries, elevated PEEP may increase ICP and reduce CPP due to diminished autoregulatory capacity [31, 32]. Our results indicate that changes in PEEP did not reduce cerebral StO<sub>2</sub> or CBV, suggesting that clinically used PEEP levels have little impact on cerebral perfusion in preterm and term newborns without brain injuries, because their effect on cardiac output remains within the limits of the autoregulatory capacity. Consequently, in newborns with limited autoregulatory capacity, such as ELBWIs, hypoxic ischemic encephalopathy and hydrocephalus, it remains uncertain whether high PEEP does not impact cerebral perfusion [33–35].

This study has some clinical implications. Various strategies for determining bedside PEEP settings in adults include volumetric capnography, transpulmonary pressure measurements, and imaging techniques such as computed tomography or electrical impedance tomography [36]. However, research on PEEP titration in neonates remains limited. We propose that combining conventional respiratory monitoring, such as pulse oximetry, with the AESCULON mini® may help optimise PEEP settings in neonates.




710 Page 6 of 7 European Journal of Pediatrics (2025) 184:710

Additionally, our findings suggest that while increasing PEEP reduces CO, cerebral perfusion is preserved. In this study, we observed an approximate 9% reduction in CO and SV, which was attributable to the elevated PEEP. Nevertheless, these values remained within the 25th to 75th percentile range of the gestational age-specific reference values previously documented [37]. Further investigation is warranted to ascertain their clinical significance in this regard. However, several previous studies have indicated that high PEEP induced a reduction in intestinal blood flow or renal failure [38–40]. Therefore, it may be advisable to avoid the use of high PEEP, particularly in instances of circulatory failure or conditions that impair organ perfusion, such as necrotising enterocolitis and prerenal failure. In situations requiring high PEEP, careful monitoring of gastrointestinal symptoms and urinary output is essential.

This study has several limitations. First, the reduction in CO may be caused not only by PEEP but also by mean airway pressure or peak inspiratory pressure. In the future, it will be necessary to change only PEEP while maintaining minute ventilation, to clarify the isolated effect of PEEP. Second, the median days at measurement were 3 days for term infants and 4 days for preterm infants, closely aligning with the transitional period. Considering the intricate hemodynamic changes that occur in newborns after birth, these findings may not be applicable beyond this timeframe. Third, the penetration depth of the NIRS signal is limited to the cerebral cortex, thereby excluding information on deeper cerebral structures. Beyond the use of NIRS, it is imperative to evaluate cerebral perfusion using a more extensive and comprehensive multimodal hemodynamic assessment. Finally, this study was conducted at a single centre with a relatively small and heterogeneous sample, including both term and preterm infants who underwent intubation for various reasons. In addition, we assessed the impact of PEEP only for 10 min in neonates with respiratory stability, and did not account for factors such as sedative or vasopressor use, and blood glucose or haemoglobin levels which may influence cerebral perfusion [41, 42]. Future research should involve larger, more homogeneous cohorts to refine PEEP recommendations for mechanically ventilated infants.

# **Conclusion**

This pilot study demonstrated that PEEP used in this study reduced CO without affecting cerebral perfusion in preterm and term newborns. Although clinically used PEEP levels have little impact on cerebral perfusion without brain injurious, high PEEP may reduce blood circulation to organs outside the brain. Future research is warranted to refine PEEP recommendations for mechanically ventilated infants.



**Author's contributions** M.Z. designed and performed the experiments and wrote the initial draft of the manuscript. All other authors contributed to the interpretation and critically reviewed the manuscript. All the authors approved the final version of the manuscript and shared accountability for all aspects of the work to ensure that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

**Funding** This work was supported by the Japan Society for the Promotion of Science (grant number 23K14985).

Data availability Data is provided within the manuscript.

#### **Declarations**

Ethics approval The study protocol was reviewed and approved by the Clinical Ethics Committee of the University Hospital, Kyoto Prefectural University of Medicine (approval number: ERB-C-2426). Research was carried out in line with the principles of the Declaration of Helsinki.

**Consent to participate** This study was designed and received ethical approval to written informed consent obtained from the legal guardians of each participant.

**STROBE statement** The authors have read the STROBE statement checklist of items, and the manuscript was prepared in accordance with this statement and checklist.

Competing interests The authors have no relevant financial or non-financial interests to disclose.

## References

- Kalikkot Thekkeveedu R, El-Saie A, Prakash V, Katakam L, Shivanna B (2022) Ventilation-induced lung injury (VILI) in neonates: evidence-based concepts and lung-protective strategies. J Clin Med 11:557. https://doi.org/10.3390/jcm11030557
- Keszler M (2017) Mechanical ventilation strategies. Semin Fetal Neonatal Med 22:267–274. https://doi.org/10.1016/j.siny.2017.06.003
- Sahetya SK, Goligher EC, Brower RG (2017) Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med 195:1429–1438
- Vieillard-Baron A, Loubieres Y, Schmitt JM et al (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87(5):1644–1650
- De Backer D (2000) The effects of positive end-expiratory pressure on the splanchnic circulation. Intensive Care Med 26:361–363
- Tomaske M, Knirsch W, Kretschmar O et al (2008) Cardiac output measurement in children: comparison of Aesculon cardiac output monitor and thermodilution. Br J Anaesth 100:517–520
- Schmidt C, Theilmeier G, Van Aken H et al (2005) Comparison
  of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output.
  Br J Anaesth 95:603–610



European Journal of Pediatrics (2025) 184:710 Page 7 of 7 710

- Suttner S, Schöllhorn T, Boldt J et al (2006) Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 32:2053–2058
- Noonan PM, Viswanathan S, Chambers A et al (2014) Non-invasive cardiac output monitoring during catheter interventions in patients with cavopulmonary circulations. Cardiol Young 24:417–421
- Grollmuss O, Demontoux S, Capderou A et al (2012) Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Med 38:1032–1039
- Noori S, Drabu B, Soleymani S et al (2012) Continuous noninvasive cardiac output measurements in the neonate by electrical velocimetry: a comparison with echocardiography. Arch Dis Child Fetal Neonatal Ed 97:F340–F343
- Norozi K, Beck C, Osthaus WA et al (2008) Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 100:88–94
- Ohmae E, Ouchi Y, Oda M et al (2006) Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage 29:697–705
- Nakamura S, Koyano K, Jinnai W et al (2015) Simultaneous measurement of cerebral hemoglobin oxygen saturation and blood volume in asphyxiated neonates by near-infrared timeresolved spectroscopy. Brain Dev 37:925–932
- Nakamura S, Kusaka T, Yasuda S et al (2013) Cerebral blood volume combined with amplitude-integrated EEG can be a suitable guide to control hypoxic/ischemic insult in a piglet model. Brain Dev 35:614–625
- Nakamura S, Kusaka T, Koyano K et al (2014) Relationship between early changes in cerebral blood volume and electrocortical activity after hypoxic-ischemic insult in newborn piglets. Brain Dev 36:563–571
- de Waal K, Kluckow M (2020) Superior vena cava flow: role, assessment and controversies in the management of perinatal perfusion. Semin Fetal Neonatal Med 25(5):101122
- Ijichi S, Kusaka T, Isobe K et al (2005) Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Pediatr Res 58:568–573
- Koyano K, Kusaka T, Nakamura S et al (2013) The effect of blood transfusion on cerebral hemodynamics in preterm infants. Transfusion 53:1459–1467
- Mahmood SS, Pinsky MR (2018) Heart-lung interactions during mechanical ventilation: the basics. Ann Transl Med 6:349
- Jardin F, Brun-Ney D, Hardy A et al (1991) Combined thermodilution and two-dimensional echocardiographic evaluation of right ventricular function during respiratory support with PEEP. Chest 99:162–168
- Huemer G, Kolev N, Kurz A et al (1994) Influence of positive end-expiratory pressure on right and left ventricular performance assessed by Doppler two-dimensional echocardiography. Chest 106:67–73
- Karlsson J, Svedmyr A, Wiegele M et al (2022) Cardiac output assessments in anesthetized children: dynamic capnography versus esophageal doppler. Anesth Analg 134:644–652
- Junqueira FM, Ferraz IS, Campos FJ et al (2024) The impact of increased PEEP on hemodynamics, respiratory mechanics, and oxygenation in pediatric ARDS. Respir Care 69:1409–1416
- Trang TT, Tibballs J, Mercier JC et al (1988) Optimization of oxygen transport in mechanically ventilated newborns using oximetry and pulsed Doppler-derived cardiac output. Crit Care Med 16:1094–1097
- Robba C, Bragazzi NL, Bertuccio A et al (2017) Effects of prone position and positive end-expiratory pressure on noninvasive estimators of ICP: a pilot study. J Neurosurg Anesthesiol 29:243–250

- Chin JH, Kim WJ, Lee J et al (2017) Effect of positive endexpiratory pressure on the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during robot-assisted laparoscopic prostatectomy: a randomized controlled trial. PLoS ONE 12:e0170369
- Shortland DB, Field D, Archer LN et al (1989) Cerebral haemodynamic effects of changes in positive end expiratory pressure in preterm infants. Arch Dis Child 64:465–469
- Scala R, Turkington PM, Wanklyn P et al (2003) Effects of incremental levels of continuous positive airway pressure on cerebral blood flow velocity in healthy adult humans. Clin Sci (Lond) 104:633–639
- 30. Yiallourou TI, Odier C, Heinzer R et al (2013) The effect of continuous positive airway pressure on total cerebral blood flow in healthy awake volunteers. Sleep Breath 17:289–296
- 31. Boone MD, Jinadasa SP, Mueller A et al (2017) The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care 26:174–181
- 32. Giardina A, Cardim D, Ciliberti P et al (2023) Effects of positive end-expiratory pressure on cerebral hemodynamics in acute brain injury patients. Front Physiol 14:1139658
- Munro MJ, Walker AM, Barfield CP (2004) Hypotensive extremely low birth weight infants have reduced cerebral blood flow. Paediatrics 114:1591–1596
- Rhee CJ, da Costa CS, Austin T, Brady KM, Czosnyka M, Lee JK (2018) Neonatal cerebrovascular autoregulation. Pediatr Res 84:602–610
- Czosnyka ZH, Czosnyka M, Whitfield PC, Donovan T, Pickard JD (2002) Cerebral autoregulation among patients with symptoms of hydrocephalus. Neurosurgery 50:526–532
- Brian JE Jr (1998) Carbon dioxide and the cerebral circulation.
   Anesthesiology 88:1365–1386
- Boet A, Jourdain G, De Luca D (2016) Stroke volume and cardiac output evaluation by electrical cardiometry: accuracy and reference nomograms in hemodynamically stable preterm neonates. J Perinatol 36:748–752
- Jonson DJ, Johannigman JA, Branson RD et al (1991) The effect of low dose dopamine on gut hemodynamics during PEEP ventilation for acute lung injury. J Surg Res 50:344–349
- Benites MH, Suarez-Sipmann F, Kattan E et al (2025) Ventilation-induced acute kidoney injury in acute respiratory failure: Do PEEP levels matter? Crit Care 29:139
- Ottolina D, Zazzeron L, Trevisi L et al (2022) Acute kidoney injury (AKI) in patients with Covid-19 infection is associated with ventilatory management with elevated positive end-expiratory pressure (PEEP). J Nephrol 35:99–111
- 41. Roberts DJ, Hall RI, Kramer AH et al (2011) Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med 39:2743–2751
- Pfister D, Strebel SP, Steiner LA (2008) Effects of catecholamines on cerebral blood vessels in patients with traumatic brain injury. Eur J Anaesthesiol 42(Suppl):98–103

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

