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Abstract 
This study aimed to clarify the extrapulmonary effects of positive end-expiratory pressure (PEEP) in neonates using nonin-
vasive monitoring techniques to monitor cardiac output (CO) and cerebral hemodynamics. This was a prospective, nonran-
domized, consecutive enrollment, single-centre study. Newborns weighing ≥ 1,000 g admitted to the neonatal intensive care 
unit for invasive mechanical ventilation from April 2023 to December 2024 were included. PEEP levels increased sequentially 
to 5 cm H2O, 7 cmH2O, and 10 cm H2O or peak inspiratory pressure not exceeding 25 cmH2O (incremental phase) and then 
decreased to 5 cm H2O by employing the reverse of the aforementioned procedure (decremental phase) while monitoring 
stroke volume (SV), CO, and cerebral hemodynamic indexes, including tissue haemoglobin oxygen saturation and total 
haemoglobin on term and preterm infants using the electrical cardiometry and near-infrared time-resolved spectroscopy. 
Throughout the procedure, fraction of inspired oxygen, inspiratory time, and tidal volume were maintained at baseline values 
determined before initiation. This study included 16 term infants (median gestational age: 38 [IQR, 38–39] weeks; median 
birth weight: 2,778 [IQR, 2,296–3,046] g) and 20 preterm infants (median gestational age: 31 [IQR, 30–33] weeks; median 
birth weight: 1,459 [IQR, 1,264–2,044] g). High PEEP significantly reduced SV and CO compared to mild PEEP in both 
term and preterm neonates. tNIRS-1 measurements remained stable throughout the procedure.
Conclusion  PEEP levels used in this study reduced CO without affecting cerebral perfusion. Although clinically used PEEP levels 
have minimal impact on cerebral perfusion in newborns, high PEEP may decrease blood circulation to organs outside the brain.

What is Known:
•Setting an appropriate positive end-expiratory pressure (PEEP) is a key component of ventilator management in newborns. PEEP influ-

ence extrapulmonary functions, including cardiac output (CO) and cerebral hemodynamics. However, limited research has explored these 
extrapulmonary effects of PEEP in neonates.

What is New:
• The PEEP levels used in this study reduced CO without affecting cerebral perfusion in newborns. Clinically used PEEP levels have minimal 

impact on cerebral perfusion in newborns. However, high PEEP may decrease blood circulation to organs outside the brain.

Keywords  Cardiac output · Neonatal intensive care units · Positive pressure respiration · Near-infrared spectroscopy · 
Stroke volume

Abbreviations
CBV	� Cerebral blood volume
CPP	� Cerebral perfusion pressure
CO	� Cardiac output
ELBWI	� Extremely low birth weight infant
ETCO2	� End-tidal carbon oxide
FIO2	� Fraction of inspired oxygen
HHb	� Deoxygenated haemoglobin
HR	� Heart rate
ICP	� Intracranial pressure
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NICU	� Neonatal intensive care unit
NIRS	� Near-infrared spectroscopy
TRS	� Near-infrared time-resolved spectroscopy
O2Hb	� Oxygenated haemoglobin
PDA	� Patent ductus arteriosus
PEEP	� Positive end-expiratory pressure
SpO2	� Percutaneous oxygen saturation
StO2	� Tissue haemoglobin oxygen saturation
SV	� Stroke volume
tHb	� Total haemoglobin
VT	� Tidal volume

Introduction

Many newborns admitted to the neonatal intensive care unit 
(NICU) require ventilator support. Setting an appropriate 
positive end-expiratory pressure (PEEP) is a key compo-
nent of ventilator management [1, 2]. Low PEEP induces 
alveolar collapse, particularly in preterm infants prone to 
surfactant deficiency, while high PEEP can cause overinfla-
tion, increasing the risk of air leaks such as pneumothorax 
and pulmonary interstitial emphysema. The aim of mechani-
cal ventilation is to maintain acceptable blood gas levels 
while minimising lung injury, which can result from exces-
sively high or low pressure delivery. However, determining 
the optimal PEEP level is challenging due to the difficulty of 
quantifying lung volumes at the bedside [3]. In addition to 
its pulmonary effects, PEEP may also influence extrapulmo-
nary functions, including cardiac output (CO) and cerebral 
hemodynamics [4, 5]. However, there is limited research 
on the extrapulmonary effects of PEEP in neonates, with a 
small number of cohorts and inconclusive results.

Recently, various monitoring devices suitable for neo-
nates have been developed. An electrical cardiometry is a 
noninvasive, continuous CO monitoring system that uti-
lizes electrical velocimetry. Previous research in adults has 
demonstrated a clinically acceptable correlation between 
CO measurements obtained from this device and those 
derived from transesophageal Doppler echocardiography 
and thermodilution methods [6–9]. Additionally, several 
studies have supported its effectiveness in assessing CO in 
infants [10–12]. Near-infrared spectroscopy (NIRS) enables 
continuous, noninvasive measurement of tissue haemoglo-
bin oxygen saturation (StO2) within a target tissue. More 
recently, near-infrared time-resolved spectroscopy (TRS) has 
been introduced as an advanced NIRS technique for clinical 
use. This method allows for the precise determination of 
absolute concentrations of oxygenated haemoglobin (O2Hb), 
deoxygenated haemoglobin (HHb), and total haemoglobin 
(tHb) concurrently with StO2. Furthermore, cerebral blood 

volume (CBV) can also be assessed using this approach 
[13]. Previous studies have been conducted utilizing TRS 
in neonates [14–16]. For example, Nakamura et al. reported 
that early postnatal elevations in CBV and cerebral StO2 
were predictive of poor outcomes in neonates with hypoxic-
ischemic encephalopathy [14]. Another noninvasive method 
for assessing cerebral hemodynamics is measurement of 
superior vena cava flow; however, it presents certain limita-
tions, including the challenge of continuous measurement 
and requirement for advanced technical expertise [17].

We hypothesised that elevated PEEP levels in neonates 
affect CO and cerebral perfusion. This study aimed to clarify 
the extrapulmonary effects of PEEP in neonates using non-
invasive monitoring techniques.

Materials and methods

Study design and ethics

This is a prospective, nonrandomized, consecutive enroll-
ment, single-centre study. This study was approved on 
March 22, 2023, by the Clinical Ethics Committee of the 
University Hospital Kyoto Prefectural University of Medi-
cine, Kyoto, Japan (approval number: ERB-C-2794). Written 
informed consent was obtained from the legal guardians of 
each participant. The study was conducted in accordance 
with the Declaration of Helsinki and adhered to relevant 
guidelines and regulations.

Newborns admitted to the NICU from April 2023 to 
December 2024 were considered for inclusion (Fig. 1). The 
study focused on patients receiving invasive mechanical ven-
tilation in synchronous intermittent mandatory ventilation 
mode. All participants were in stable condition, particularly 
regarding respiratory status, and were approved for inclu-
sion by the attending medical staff. Exclusion criteria were 
extremely low birth weight infants (ELBWIs), congenital 
heart defects affecting systemic circulation (including symp-
tomatic patent ductus arteriosus [PDA] and large patent fora-
men ovale [PFO]), cerebral anomalies such as hydrocephalus 
(including intraventricular haemorrhage), and infants who 
underwent therapeutic hypothermia.

Noninvasive monitoring techniques

The AESCULON mini® (OSYPKA MEDICAL and Heiwa 
Bussan, Tokyo, Japan) device was used to evaluate the neo-
nates’ stroke volume (SV) and CO fluctuations during PEEP 
changes. Four surface electrodes were attached to the patients, 
one on the forehead, one on the left side of the neck, one on 
the left lower thorax, and one on the left thigh. A portable 
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three-wavelength TRS system (tNIRS-1; Hamamatsu Photon-
ics K.K., Hamamatsu, Japan) was used, with the probe affixed 
to the forehead. Light emission and detection optodes were 
positioned on the parietal area, 30 mm apart. The TRS system 

utilises a time-correlated single-photon-counting method for 
detection, as previously described [15, 16, 18, 19]. The tHb, 
StO2, and CBV were calculated as follows:

Fig. 1   Flow diagram showing the number of included infants

The square brackets denote the Hb concentration (μM). 
MWHb is the molecular weight of Hb (64,500), Hb is the 
blood Hb concentration (g/dl) and Dt is the brain tissue 
density (1.05 g/ml).

Study protocol

To clarify the extrapulmonary effects of PEEP in neo-
nates, PEEP levels were modified according to the fol-
lowing protocol while monitoring CO, SV, heart rate (HR), 
StO2, O2Hb and HHb using the AESCULON mini® and 
tNIRS-1. Throughout the procedure, fraction of inspired 
oxygen (FIO2), inspiratory time, and respiratory rate were 
maintained at baseline values determined before initia-
tion. Ventilator settings were adjusted to a fixed tidal vol-
ume (VT) of 5–7 mL/kg based on predicted body weight, 
with a volume guarantee feature. End-tidal carbon dioxide 

[tHb] = [O
2
Hb] + [HHb]

StO
2
(%) = [O

2
Hb]∕[tHb] × 100

CBV (ml∕100g brain) = [tHb] ×MWHb × 10 − 6∕(Hb × 10
−2 × Dt × 10)

(ETCO2) and percutaneous oxygen saturation (SpO2) were 
continuously monitored. In cases where FiO2 is below 0.3 
and the respiratory status is sufficiently stable to contem-
plate extubation and PDA and PFO flow did not affect 
circulation, PEEP was sustained at 5 cmH2O (mild level) 
for 15–20 min. It was then incrementally increased every 
10 min to 7 cmH2O (moderate level) and 10 cm H2O or 
peak inspiratory pressure not exceeding 25 cmH2O (high 
level) (incremental phase). After a stabilisation period 
of 10 min, PEEP was sequentially decreased from high 
to moderate, then to mild levels (decremental phase). 
Mean values of measurements recorded each minute were 
calculated.

Statistical analyses

Ventilator settings, vital signs, and AESCULON mini® 
and tNIRS-1 measurements were compared among the 
three PEEP levels (mild, moderate, and high) using Fried-
man’s analysis of variance, with Bonferroni correction for 
multiple comparisons. All statistical analyses were per-
formed using EZR software (Saitama Medical Centre, 
Jichi Medical University, Saitama, Japan).

Results

This study included 16 term infants (median gestational 
age: 38 [IQR, 38–39] weeks; median birth weight: 2,778 
[IQR, 2,296–3,046] g) and 20 preterm infants (median 
gestational age: 31 [IQR, 30–33] weeks; median birth 
weight: 1,459 [IQR, 1,264–2,044] g). The Apgar scores 
at 1 and 5 min were 5 [IQR, 3–7] and 7 [IQR, 6–8], respec-
tively. The median number of days at measurement was 3 
[IQR, 3–4] for term infants and 4 [IQR, 3–6] for preterm 
infants. The primary reasons for intubation were respira-
tory distress syndrome in 14 cases (39%), transient tachyp-
nea of newborns in 9 cases (25%), meconium aspiration 
syndrome in 2 cases (6%), chylothorax in one case (3%) 
and surgery in 10 cases (28%) (Table 1). Furthermore, the 
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number of patients who received catecholamines or seda-
tives is shown in Table 1.

Table 2 presents the measurement changes in term 
and preterm infants during the incremental phase. FIO2 
and VT remained stable, while SpO2, ETCO2 and HR 
showed no variation. Increasing PEEP from mild to high 

levels significantly reduced SV and CO in both term and 
preterm infants. Additionally, during the decremental 
phase, lowering PEEP facilitated the normalisation of 
SV and CO (Table 3). However, t-NIRS-1 measurements 
remained unchanged throughout the procedure (Tables 2 
and 3).

Table 1   Descriptive 
characteristics of the enrolled 
patients

Values are represented as median (interquartile range) unless specified otherwise

parameter terminfants(n = 16) preterm infants (n = 20)

Gestationalage,weeks 38(38–39) 31(30–33)
Birthweight,g 2,778 (2,296–3,046) 1,459(1,264–2,044)
Male/Female,n 7/9 8/10
Cesareansection,n(%) 4(25) 18(90)
Twinbirth,n(%) 0(0) 7(35)
Apgarscoreat1min 5(4–7) 5(3–6)
Apgarscoreat5min 6(5–9) 7(7–8)
Surfactant administration,n (%) 0(0) 14(70)
Daysofmeasurements,days 3(3–4) 4(3–6)
Catecholamines use, n (%) 9 (56) 15 (75)
Administration of sedatives, n (%) 4 (25) 3 (15)
Reasonsofintubation
Respiratory distress syndrome,n(%) 0 (0) 14(70)
Transient tachypnea of newborns, n (%) 7 (44) 2 (10)
Meconium aspiration syndrome, n (%) 2 (13) 0 (0)
Chylothorax, n (%) 0 (0) 1 (5)
Surgery, n(%) 7(44) 3(15)

Table 2   The influence of PEEP on incremental phase

Values are represented as mean ± standard deviation or median (interquartile range) unless specified otherwise.   CBV, cerebral blood volume; 
CO, cardiac output; ETCO2, end-tidal carbon oxide; FIO2, fraction of inspired oxygen; HR, heart rate; MAP, mean airway pressure; PEEP, posi-
tive end-expiratory pressure;PIP, positive inspiratory pressure; SV, stroke volume; SpO2, percutaneous oxygen saturation; StO2, tissue hemo-
globin oxygen saturation; tHB, total hemoglobin; VT, tidal volume. The difference among the groups was tested for significance with Friedman’s 
analysis of variance after bonferoni adjusted.† <.05 versus mild; ††<.01 versus mild

parameter term infants(n = 16) preterminfants(n = 20)

mild moderate high mild moderate high

PEEP,cmH2O 5.0 ± 0 7.0 ± 0†† 9.9 ± 0.4†† 5.0 ± 0 7.0 ± 0†† 9.6 ± 0.7††

PIP,cmH2O 15.6 ± 2.1 18.8 ± 2.0†† 23.2 ± 1.5†† 15.2 ± 3.1 19.6 ± 3.3†† 23.6 ± 2.7††

MAP,cmH2O 7.1 ± 0.6 9.3 ± 0.6†† 12.4 ± 1.1†† 7.4 ± 0.7 9.9 ± 1.1†† 12.9 ± 0.8††

FIO2 0.21(0.21–0.25) 0.21 (0.21–0.25) 0.21 (0.21–0.25) 0.21(0.21–0.27) 0.21(0.21–0.27) 0.21(0.21–0.27)
VT/kg,ml/kg 5.2(5.0–6.2) 5.4 (5.0–6.4) 5.2(5.0–6.5) 5.4(5.1–5.6) 5.2(5.0–5.4) 5.3(5.0–5.6)
SpO2,% 97.3 ± 2.4 97.6 ± 2.4 98.6 ± 1.6 96.4 ± 3.0 96.4 ± 3.0 96.9 ± 3.3
ETCO2,mmHg 40.0 ± 3.9 39.9 ± 3.9 39.7 ± 4.3 40.0 ± 7.4 39.5 ± 7.5 37.5 ± 5.9
HR,/min 123 ± 11 123 ± 11 125 ± 11 141 ± 13 143 ± 13 144 ± 14
SV,ml/kg 1.99(1.82–2.16) 1.96 (1.82–2.17) 1.85(1.63–2.01)†† 1.64(1.56–2.04) 1.57(1.51–1.97)† 1.50(1.44–1.77)†

CO,ml/kg/min 238(209–283) 237(204–273) 224(198–264)†† 242(233–278) 234(229–259)†† 222(212–256)††

StO2,% 64(60–66) 63(60–65) 63(61–65) 65(64–67) 66(63–67) 67(63–69)
tHb,μmmol/L 47(41–58) 47(42–58) 48(42–58) 51(48–55) 51(48–55) 51(47–54)
CBV,ml/100g brain 2.1(1.7–2.7) 2.2(1.8–2.7) 2.1(1.8–2.7) 2.3(2.1–2.5) 2.3(2.1–2.5) 2.3(2.0–2.5)
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Discussion

This study demonstrated that high PEEP in ventilated neo-
nates reduces SV and CO, while the PEEP levels used in this 
study did not affect cerebral perfusion. In patients receiving 
mechanical ventilation, PEEP exerts a dual influence on cir-
culation [20]. It can elevate pulmonary vascular resistance 
and right ventricular afterload due to increased transpul-
monary pressure. Conversely, by increasing intrathoracic 
pressure, it may reduce cardiac preload [21, 22]. However, 
few studies have examined the impact of PEEP on systemic 
circulation in neonatal and pediatric populations. Recently, 
Karlsson et al. reported that increasing PEEP to 10 cmH2O 
in anesthetized children resulted in an 18% relative decrease 
in CO [23]. Similarly, Junqueira et al. found that high PEEP 
improved oxygen saturation but significantly reduced cardiac 
index in pediatric patients with acute respiratory distress 
syndrome [24]. Earlier studies on mechanically ventilated 
newborns with respiratory distress syndrome also showed 
that stepwise PEEP increases depressed CO [25]. Using a 
noninvasive approach, we confirmed that elevating PEEP 
from 5 cmH2O to 10 cmH2O reduced SV and CO in venti-
lated newborns, consistent with previous reports.

The effect of PEEP on cerebral hemodynamics remains 
inconclusive. Excessively elevated PEEP may reduce CPP 
due to decreased CO. Although few data exist describing the 
influence of PEEP on cerebral perfusion in patients without 
intracranial pathology, because ICP is not ordinarily moni-
tored, if cerebral autoregulation functions normally, CBF is 
preserved. The use of noninvasive methods to assess ICP, 

such as TCD and optic nerve sheath diameter measurement, 
indicates that a PEEP of 8 cm H2O exerts minimal impact 
on ICP [26, 27]. In addition, the influence of PEEP on cer-
ebral perfusion and oxygenation has been investigated using 
TCD and NIRS in patients without brain injury undergoing 
elective surgical procedures. While opinions diverge on the 
impact of airway pressure on CBF [28, 29], it is generally 
accepted that local oxygenation is preserved during airway 
pressure application in healthy volunteers [30]. Conversely, 
in patients with brain injuries, elevated PEEP may increase 
ICP and reduce CPP due to diminished autoregulatory 
capacity [31, 32]. Our results indicate that changes in PEEP 
did not reduce cerebral StO2 or CBV, suggesting that clini-
cally used PEEP levels have little impact on cerebral perfu-
sion in preterm and term newborns without brain injuries, 
because their effect on cardiac output remains within the 
limits of the autoregulatory capacity. Consequently, in new-
borns with limited autoregulatory capacity, such as ELBWIs, 
hypoxic ischemic encephalopathy and hydrocephalus, it 
remains uncertain whether high PEEP does not impact cer-
ebral perfusion [33–35].

This study has some clinical implications. Various 
strategies for determining bedside PEEP settings in adults 
include volumetric capnography, transpulmonary pressure 
measurements, and imaging techniques such as computed 
tomography or electrical impedance tomography [36]. 
However, research on PEEP titration in neonates remains 
limited. We propose that combining conventional respira-
tory monitoring, such as pulse oximetry, with the AESCU-
LON mini® may help optimise PEEP settings in neonates. 

Table 3   The influence of PEEP on incremental phase

Values are represented as mean ± standard deviation or median (interquartile range) unless specified otherwise.   CBV, cerebral blood 
volume;CO, cardiac output; ETCO2, end-tidal carbon oxide; FIO2, fraction of inspired oxygen; HR, heart rate; MAP, mean airway pressure; 
PEEP, positive end-expiratory pressure; PIP, positive inspiratory pressure; SV, stroke volume; SpO2, percutaneous oxygen saturation; StO2, tis-
sue hemoglobin oxygen saturation; tHB, total hemoglobin; VT, tidal volume. The difference among the groups was tested for significance with 
Friedman’s analysis of variance after bonferoni adjusted. † <.05 versus mild; ††<.01 versus high

 parameter  term  infants (n=16) preterm    infants    (n=20)

 High moderate mild High moderate mild

PEEP,  cmH2O 9.9 ± 0.4 7.0 ± 0†† 5.0 ± 0†† 9.6 ± 0.7 7.0±0†† 5.0 ± 0††
PIP,  cmH2O 23.2±1.5 16.6 ±2.2†† 16.0 ± 1.8†† 23.6 ± 2.7 18.2 ± 3.6†† 14.2    ±    2.8††
MAP,  cmH2O 12.5±1.0  9.0 ± 1.0†† 7.1 ± 0.5††  12.9 ± 0.8 9.8 ± 1.4†† 7.2    ±    0.7††
FIO2 0.21 (0.21–0.25.21.25) 0.21 (0.21–0.25.21.25) 0.21    (0.21    -    0.25) 0.21 (0.21    -    0.27) 0.21    (0.21    -    0.27) 0.21    (0.21    -    0.27)
VT/kg,  ml/kg 5.2 (5.0–6.5.0.5) 5.2 (5.0–6.4.0.4) 5.2  (5.0 - 6.3) 5.3    (5.0    -    5.6) 5.3    (5.0    -    5.7) 5.3 (5.1 −5.6)
SpO2,  % 98.6±1.6 98.2 ± 2.3 97.3 ± 2.3 96.9    ±    3.3 97.6 ± 2.6 97.4±2.3
ETCO2,  mmHg 39.1±3.7 39.9 ± 3.9 40.7±6.3 38.6 ±7.2 39.1± 7.4 37.8±5.2
HR,/min 125 ± 11  123 ± 12 123 ±11 144 ± 14 141 ± 13 139 ±14
SV,  ml/kg 1.84 (1.55–1.97.55.97) 1.96 (1.76 −2.10)† 1.99 (1.82-    2.16)†† 1.53  (1.40 - 1.74) 1.58(1.53 −1.87)†† 1.63 (1.58   −1.97)††
CO,  ml/kg/min 223 (193 −259) 232 (192 −274)† 238 (209-    283)†† 214 (207 - 249) 228 (218 −259)† 233 (223–259)†
StO2,  % 64 (60–65) 62 (59–65) 64    (60    -    66) 66 (62 - 70) 67 (63 - 71) 68 (63–70)
tHb,  μmmol/L 50 (45–59) 47 (42- 58) 47    (41    -    58) 51 (46 - 54) 51 (46 −53) 50 (47–53)
CBV,  ml/100g brain 2.3 (1.8–2.7.8.7) 2.2(1.8 −2.7) 2.1    (1.7    -    2.7) 2.3 (2.1- 2.4) 2.4  (2.1- 2.4) 2.3 (2.1–2.5.1.5)
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Additionally, our findings suggest that while increasing 
PEEP reduces CO, cerebral perfusion is preserved. In this 
study, we observed an approximate 9% reduction in CO and 
SV, which was attributable to the elevated PEEP. Neverthe-
less, these values remained within the 25th to 75th percen-
tile range of the gestational age-specific reference values 
previously documented [37]. Further investigation is war-
ranted to ascertain their clinical significance in this regard. 
However, several previous studies have indicated that high 
PEEP induced a reduction in intestinal blood flow or renal 
failure [38–40]. Therefore, it may be advisable to avoid the 
use of high PEEP, particularly in instances of circulatory 
failure or conditions that impair organ perfusion, such as 
necrotising enterocolitis and prerenal failure. In situations 
requiring high PEEP, careful monitoring of gastrointestinal 
symptoms and urinary output is essential.

This study has several limitations. First, the reduction 
in CO may be caused not only by PEEP but also by mean 
airway pressure or peak inspiratory pressure. In the future, 
it will be necessary to change only PEEP while maintaining 
minute ventilation, to clarify the isolated effect of PEEP. 
Second, the median days at measurement were 3 days for 
term infants and 4 days for preterm infants, closely align-
ing with the transitional period. Considering the intricate 
hemodynamic changes that occur in newborns after birth, 
these findings may not be applicable beyond this timeframe. 
Third, the penetration depth of the NIRS signal is limited to 
the cerebral cortex, thereby excluding information on deeper 
cerebral structures. Beyond the use of NIRS, it is impera-
tive to evaluate cerebral perfusion using a more extensive 
and comprehensive multimodal hemodynamic assessment. 
Finally, this study was conducted at a single centre with a 
relatively small and heterogeneous sample, including both 
term and preterm infants who underwent intubation for vari-
ous reasons. In addition, we assessed the impact of PEEP 
only for 10 min in neonates with respiratory stability, and 
did not account for factors such as sedative or vasopressor 
use, and blood glucose or haemoglobin levels which may 
influence cerebral perfusion [41, 42]. Future research should 
involve larger, more homogeneous cohorts to refine PEEP 
recommendations for mechanically ventilated infants.

Conclusion

This pilot study demonstrated that PEEP used in this study 
reduced CO without affecting cerebral perfusion in pre-
term and term newborns. Although clinically used PEEP 
levels have little impact on cerebral perfusion without 
brain injurious, high PEEP may reduce blood circulation 
to organs outside the brain. Future research is warranted 
to refine PEEP recommendations for mechanically venti-
lated infants.
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