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Abstract

This study aimed to clarify the extrapulmonary effects of positive end-expiratory pressure (PEEP) in neonates using nonin-
vasive monitoring techniques to monitor cardiac output (CO) and cerebral hemodynamics. This was a prospective, nonran-
domized, consecutive enrollment, single-centre study. Newborns weighing > 1,000 g admitted to the neonatal intensive care
unit for invasive mechanical ventilation from April 2023 to December 2024 were included. PEEP levels increased sequentially
to 5 cm H,0, 7 cmH,0, and 10 cm H,O or peak inspiratory pressure not exceeding 25 cmH,O (incremental phase) and then
decreased to 5 cm H,O by employing the reverse of the aforementioned procedure (decremental phase) while monitoring
stroke volume (SV), CO, and cerebral hemodynamic indexes, including tissue haemoglobin oxygen saturation and total
haemoglobin on term and preterm infants using the electrical cardiometry and near-infrared time-resolved spectroscopy.
Throughout the procedure, fraction of inspired oxygen, inspiratory time, and tidal volume were maintained at baseline values
determined before initiation. This study included 16 term infants (median gestational age: 38 [IQR, 38-39] weeks; median
birth weight: 2,778 [IQR, 2,296-3,046] g) and 20 preterm infants (median gestational age: 31 [IQR, 30-33] weeks; median
birth weight: 1,459 [IQR, 1,264-2,044] g). High PEEP significantly reduced SV and CO compared to mild PEEP in both
term and preterm neonates. tNIRS-1 measurements remained stable throughout the procedure.

Conclusion PEEP levels used in this study reduced CO without affecting cerebral perfusion. Although clinically used PEEP levels
have minimal impact on cerebral perfusion in newborns, high PEEP may decrease blood circulation to organs outside the brain.

What is Known:

eSetting an appropriate positive end-expiratory pressure (PEEP) is a key component of ventilator management in newborns. PEEP influ-
ence extrapulmonary functions, including cardiac output (CO) and cerebral hemodynamics. However, limited research has explored these
extrapulmonary effects of PEEP in neonates.

What is New:

o The PEEP levels used in this study reduced CO without affecting cerebral perfusion in newborns. Clinically used PEEP levels have minimal
impact on cerebral perfusion in newborns. However, high PEEP may decrease blood circulation to organs outside the brain.
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NICU  Neonatal intensive care unit

NIRS Near-infrared spectroscopy

TRS Near-infrared time-resolved spectroscopy
O,Hb Oxygenated haemoglobin

PDA Patent ductus arteriosus

PEEP Positive end-expiratory pressure

SpO, Percutaneous oxygen saturation

StO, Tissue haemoglobin oxygen saturation
SV Stroke volume

tHb Total haemoglobin

V¢ Tidal volume

Introduction

Many newborns admitted to the neonatal intensive care unit
(NICU) require ventilator support. Setting an appropriate
positive end-expiratory pressure (PEEP) is a key compo-
nent of ventilator management [1, 2]. Low PEEP induces
alveolar collapse, particularly in preterm infants prone to
surfactant deficiency, while high PEEP can cause overinfla-
tion, increasing the risk of air leaks such as pneumothorax
and pulmonary interstitial emphysema. The aim of mechani-
cal ventilation is to maintain acceptable blood gas levels
while minimising lung injury, which can result from exces-
sively high or low pressure delivery. However, determining
the optimal PEEP level is challenging due to the difficulty of
quantifying lung volumes at the bedside [3]. In addition to
its pulmonary effects, PEEP may also influence extrapulmo-
nary functions, including cardiac output (CO) and cerebral
hemodynamics [4, 5]. However, there is limited research
on the extrapulmonary effects of PEEP in neonates, with a
small number of cohorts and inconclusive results.
Recently, various monitoring devices suitable for neo-
nates have been developed. An electrical cardiometry is a
noninvasive, continuous CO monitoring system that uti-
lizes electrical velocimetry. Previous research in adults has
demonstrated a clinically acceptable correlation between
CO measurements obtained from this device and those
derived from transesophageal Doppler echocardiography
and thermodilution methods [6-9]. Additionally, several
studies have supported its effectiveness in assessing CO in
infants [10—12]. Near-infrared spectroscopy (NIRS) enables
continuous, noninvasive measurement of tissue haemoglo-
bin oxygen saturation (StO,) within a target tissue. More
recently, near-infrared time-resolved spectroscopy (TRS) has
been introduced as an advanced NIRS technique for clinical
use. This method allows for the precise determination of
absolute concentrations of oxygenated haemoglobin (O,Hb),
deoxygenated haemoglobin (HHb), and total haemoglobin
(tHb) concurrently with StO,. Furthermore, cerebral blood
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volume (CBV) can also be assessed using this approach
[13]. Previous studies have been conducted utilizing TRS
in neonates [14—16]. For example, Nakamura et al. reported
that early postnatal elevations in CBV and cerebral StO,
were predictive of poor outcomes in neonates with hypoxic-
ischemic encephalopathy [14]. Another noninvasive method
for assessing cerebral hemodynamics is measurement of
superior vena cava flow; however, it presents certain limita-
tions, including the challenge of continuous measurement
and requirement for advanced technical expertise [17].

We hypothesised that elevated PEEP levels in neonates
affect CO and cerebral perfusion. This study aimed to clarify
the extrapulmonary effects of PEEP in neonates using non-
invasive monitoring techniques.

Materials and methods
Study design and ethics

This is a prospective, nonrandomized, consecutive enroll-
ment, single-centre study. This study was approved on
March 22, 2023, by the Clinical Ethics Committee of the
University Hospital Kyoto Prefectural University of Medi-
cine, Kyoto, Japan (approval number: ERB-C-2794). Written
informed consent was obtained from the legal guardians of
each participant. The study was conducted in accordance
with the Declaration of Helsinki and adhered to relevant
guidelines and regulations.

Newborns admitted to the NICU from April 2023 to
December 2024 were considered for inclusion (Fig. 1). The
study focused on patients receiving invasive mechanical ven-
tilation in synchronous intermittent mandatory ventilation
mode. All participants were in stable condition, particularly
regarding respiratory status, and were approved for inclu-
sion by the attending medical staff. Exclusion criteria were
extremely low birth weight infants (ELBWIs), congenital
heart defects affecting systemic circulation (including symp-
tomatic patent ductus arteriosus [PDA] and large patent fora-
men ovale [PFO]), cerebral anomalies such as hydrocephalus
(including intraventricular haemorrhage), and infants who
underwent therapeutic hypothermia.

Noninvasive monitoring techniques

The AESCULON mini® (OSYPKA MEDICAL and Heiwa
Bussan, Tokyo, Japan) device was used to evaluate the neo-
nates’ stroke volume (SV) and CO fluctuations during PEEP
changes. Four surface electrodes were attached to the patients,
one on the forehead, one on the left side of the neck, one on
the left lower thorax, and one on the left thigh. A portable



European Journal of Pediatrics ~ (2025) 184:710

Page3of7 710

three-wavelength TRS system (tNIRS-1; Hamamatsu Photon-
ics K.K., Hamamatsu, Japan) was used, with the probe affixed
to the forehead. Light emission and detection optodes were
positioned on the parietal area, 30 mm apart. The TRS system

[tHb)] = [0,Hb] + [HHD]
S510,(%) = [0,Hb]/[tHb] X 100

utilises a time-correlated single-photon-counting method for
detection, as previously described [15, 16, 18, 19]. The tHb,
StO,, and CBV were calculated as follows:

CBV (ml/100g brain) = [tHb] X MW,;, X 10 — 6/(Hb x 1072 x D, x 10)

The square brackets denote the Hb concentration (pM).
MWy, is the molecular weight of Hb (64,500), Hb is the
blood Hb concentration (g/dl) and D, is the brain tissue
density (1.05 g/ml).

Study protocol

To clarify the extrapulmonary effects of PEEP in neo-
nates, PEEP levels were modified according to the fol-
lowing protocol while monitoring CO, SV, heart rate (HR),
StO,, O,Hb and HHb using the AESCULON mini® and
tNIRS-1. Throughout the procedure, fraction of inspired
oxygen (F,0,), inspiratory time, and respiratory rate were
maintained at baseline values determined before initia-
tion. Ventilator settings were adjusted to a fixed tidal vol-
ume (V1) of 5-7 mL/kg based on predicted body weight,
with a volume guarantee feature. End-tidal carbon dioxide

361 infants admitted to NICU
during present study

286 infants without

endotracheal intubation

v

75 infants received invasive
mechanical ventilation with

Exclusion (n=39)

15 extremely low birth weight infants
7 extubated before data sampling

7 congenital heart disease

5 asphixia

4 cerebral anomalies

1 only HFO

v

36 infants analyzed

Fig. 1 Flow diagram showing the number of included infants

(ETCO,) and percutaneous oxygen saturation (SpO,) were
continuously monitored. In cases where FiO, is below 0.3
and the respiratory status is sufficiently stable to contem-
plate extubation and PDA and PFO flow did not affect
circulation, PEEP was sustained at 5 cmH,O (mild level)
for 15-20 min. It was then incrementally increased every
10 min to 7 cmH,0O (moderate level) and 10 cm H,O or
peak inspiratory pressure not exceeding 25 cmH,O (high
level) (incremental phase). After a stabilisation period
of 10 min, PEEP was sequentially decreased from high
to moderate, then to mild levels (decremental phase).
Mean values of measurements recorded each minute were
calculated.

Statistical analyses

Ventilator settings, vital signs, and AESCULON mini®
and tNIRS-1 measurements were compared among the
three PEEP levels (mild, moderate, and high) using Fried-
man’s analysis of variance, with Bonferroni correction for
multiple comparisons. All statistical analyses were per-
formed using EZR software (Saitama Medical Centre,
Jichi Medical University, Saitama, Japan).

Results

This study included 16 term infants (median gestational
age: 38 [IQR, 38-39] weeks; median birth weight: 2,778
[IQR, 2,296-3,046] g) and 20 preterm infants (median
gestational age: 31 [IQR, 30-33] weeks; median birth
weight: 1,459 [IQR, 1,264-2,044] g). The Apgar scores
at I and 5 min were 5 [IQR, 3-7] and 7 [IQR, 6-8], respec-
tively. The median number of days at measurement was 3
[IQR, 3—4] for term infants and 4 [IQR, 3—6] for preterm
infants. The primary reasons for intubation were respira-
tory distress syndrome in 14 cases (39%), transient tachyp-
nea of newborns in 9 cases (25%), meconium aspiration
syndrome in 2 cases (6%), chylothorax in one case (3%)
and surgery in 10 cases (28%) (Table 1). Furthermore, the
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number of patients who received catecholamines or seda-
tives is shown in Table 1.

Table 2 presents the measurement changes in term
and preterm infants during the incremental phase. F,0,
and Vg remained stable, while SpO,, ETCO, and HR
showed no variation. Increasing PEEP from mild to high

levels significantly reduced SV and CO in both term and
preterm infants. Additionally, during the decremental
phase, lowering PEEP facilitated the normalisation of
SV and CO (Table 3). However, t-NIRS-1 measurements
remained unchanged throughout the procedure (Tables 2
and 3).

Table 1 Descriptive

o parameter terminfants(n=16) preterm infants (n=20)
characteristics of the enrolled
patients Gestationalage, weeks 38(38-39) 31(30-33)
Birthweight,g 2,778 (2,296-3,046) 1,459(1,264-2,044)
Male/Female,n 719 8/10
Cesareansection,n(%) 4(25) 18(90)
Twinbirth,n(%) 0(0) 7(35)
Apgarscoreat min 5(4-7) 5(3-6)
ApgarscoreatSmin 6(5-9) 7(7-8)
Surfactant administration,n (%) 0(0) 14(70)
Daysofmeasurements,days 3(34) 4(3-6)
Catecholamines use, n (%) 9 (56) 15 (75)
Administration of sedatives, n (%) 4 (25) 3(15)
Reasonsofintubation
Respiratory distress syndrome,n(%) 0(0) 14(70)
Transient tachypnea of newborns, n (%) 7 (44) 2 (10)
Meconium aspiration syndrome, n (%) 2(13) 0(0)
Chylothorax, n (%) 0 (0) 1(5
Surgery, n(%) 7(44) 3(15)
Values are represented as median (interquartile range) unless specified otherwise
Table 2 The influence of PEEP on incremental phase
parameter term infants(n=16) preterminfants(n = 20)
mild moderate high mild moderate high
PEEP,cmH,0 5.0+0 7.0+0'" 9.9+0.4" 5.0+0 7.0+07 9.6+0.7"
PIP,cmH,0 15.6+2.1 18.8+2.07 23.2+1.5' 152+3.1 19.6+3.37 23.6+2.7"
MAP,cmH,0 7.1+0.6 9.3+0.6" 124+1.17 7.4+0.7 9.9+1.17 12.9+0.8™
F,0, 0.21(0.21-0.25)  0.21 (0.21-0.25)  0.21 (0.21-0.25) 0.21(0.21-0.27)  0.21(0.21-0.27) 0.21(0.21-0.27)
V/kgml/kg 5.2(5.0-6.2) 5.4 (5.0-6.4) 5.2(5.0-6.5) 5.4(5.1-5.6) 5.2(5.0-5.4) 5.3(5.0-5.6)
Sp02,% 97.3+2.4 97.6+2.4 98.6+1.6 96.4+3.0 96.4+3.0 96.9+3.3
ETCO,,mmHg 40.0+3.9 39.9+3.9 39.7+43 40.0+74 39.5+7.5 37.5+5.9
HR,/min 123 +11 123+11 125+11 141+£13 143+13 144+ 14
SV,ml/kg 1.99(1.82-2.16)  1.96 (1.82-2.17)  1.85(1.63-2.01)""  1.64(1.56-2.04)  1.57(1.51-1.97)"  1.50(1.44-1.77)"
CO,ml/kg/min 238(209-283) 237(204-273) 224(198-264)"" 242(233-278) 234(229-259)" 222(212-256)""
St0,,% 64(60-66) 63(60-65) 63(61-65) 65(64-67) 66(63-67) 67(63-69)
tHb,pmmol/L 47(41-58) 47(42-58) 48(42-58) 51(48-55) 51(48-55) 51(47-54)
CBV,ml/100g brain ~ 2.1(1.7-2.7) 2.2(1.8-2.7) 2.1(1.8-2.7) 2.3(2.1-2.5) 2.3(2.1-2.5) 2.3(2.0-2.5)

Values are represented as mean + standard deviation or median (interquartile range) unless specified otherwise. CBYV, cerebral blood volume;
CO, cardiac output; ETCO,, end-tidal carbon oxide; FIO,, fraction of inspired oxygen; HR, heart rate; MAP, mean airway pressure; PEEP, posi-
tive end-expiratory pressure;PIP, positive inspiratory pressure; SV, stroke volume; SpO,, percutaneous oxygen saturation; StO,, tissue hemo-
globin oxygen saturation; tHB, total hemoglobin; V-, tidal volume. The difference among the groups was tested for significance with Friedman’s

analysis of variance after bonferoni adjusted.t <.05 versus mild; {{<.01 versus mild
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Table 3 The influence of PEEP on incremental phase
parameter term infants (n=16) preterm infants (n=20)

High moderate mild High moderate mild
PEEP, cmH,0 99+04 7.0 £ 0FF 5.0 +0FF 9.6 +0.7 7.0£07+ 5.0 £ 0ff
PIP, cmH,0 23.2+1.5 16.6 2.2+ 16.0 + 1.8 23.6 +2.7 18.2 + 3.6+ 142 + 2.87f
MAP, cmH,0 12.5+1.0 9.0 + 1.077 7.1 £0.577 129+ 0.8 9.8 + 1.477 72 + 0777
FIO, 0.21 (0.21-0.25.21.25) 0.21 (0.21-0.25.21.25) 0.21 (0.21 0.25) 0.21(0.21 0.27) 021 (0.21 0.27) 021 (0.21 0.27)
V/kg, mi/kg 5.2 (5.0-6.5.0.5) 5.2 (5.0-6.4.0.4) 52 (5.0-6.3) 53 (5.0 56) 53 (5.0 5.7) 53 (5.1 =5.6)
Sp0,, % 98.6+1.6 98.2+23 97.3+£23 969 + 33 97.6 +2.6 97.4+2.3
ETCO,, mmHg 39.1+£3.7 39.9+39 40.7+6.3 38.6 7.2 39.1+£ 7.4 37.8+£5.2
HR,/min 125+ 11 123 £ 12 123 +11 144 + 14 141 +13 139 £14
SV, ml/kg 1.84 (1.55-1.97.55.97) 1.96 (1.76 —2.10)} 1.99 (1.82- 2.16)T1 1.53 (1.40-1.74) 1.58(1.53 =1.87)11 1.63 (1.58 —1.97)7+
CO, ml/kg/min 223 (193 -259) 232 (192 =274)F 238 (209- 283)fT 214 (207 - 249) 228 (218 =259)t 233 (223-259)
StO,, % 64 (60-65) 62 (59-65) 64 (60 - 66) 66 (62 - 70) 67 (63-171) 68 (63-70)
tHb, pmmol/L 50 (45-59) 47 (42- 58) 47 (41 - 58) 51 (46 - 54) 51 (46 —53) 50 (47-53)
CBV, ml/100g brain 2.3 (1.8-2.7.8.7) 2.2(1.8 =2.7) 21 (1.7 - 27) 23(2.1-2.4) 24 (2.1-2.4) 2.3(2.1-2.5.1.5)

Values are represented as mean=standard deviation or median (interquartile range) unless specified otherwise.
volume;CO, cardiac output; ETCO,, end-tidal carbon oxide; FIO,, fraction of inspired oxygen; HR, heart rate; MAP, mean airway pressure;
PEEP, positive end-expiratory pressure; PIP, positive inspiratory pressure; SV, stroke volume; SpO,, percutaneous oxygen saturation; StO,, tis-
sue hemoglobin oxygen saturation; tHB, total hemoglobin; V, tidal volume. The difference among the groups was tested for significance with

CBYV, cerebral blood

Friedman’s analysis of variance after bonferoni adjusted. ¥ <.05 versus mild; {1<.01 versus high

Discussion

This study demonstrated that high PEEP in ventilated neo-
nates reduces SV and CO, while the PEEP levels used in this
study did not affect cerebral perfusion. In patients receiving
mechanical ventilation, PEEP exerts a dual influence on cir-
culation [20]. It can elevate pulmonary vascular resistance
and right ventricular afterload due to increased transpul-
monary pressure. Conversely, by increasing intrathoracic
pressure, it may reduce cardiac preload [21, 22]. However,
few studies have examined the impact of PEEP on systemic
circulation in neonatal and pediatric populations. Recently,
Karlsson et al. reported that increasing PEEP to 10 cmH,0
in anesthetized children resulted in an 18% relative decrease
in CO [23]. Similarly, Junqueira et al. found that high PEEP
improved oxygen saturation but significantly reduced cardiac
index in pediatric patients with acute respiratory distress
syndrome [24]. Earlier studies on mechanically ventilated
newborns with respiratory distress syndrome also showed
that stepwise PEEP increases depressed CO [25]. Using a
noninvasive approach, we confirmed that elevating PEEP
from 5 cmH,0 to 10 cmH,0 reduced SV and CO in venti-
lated newborns, consistent with previous reports.

The effect of PEEP on cerebral hemodynamics remains
inconclusive. Excessively elevated PEEP may reduce CPP
due to decreased CO. Although few data exist describing the
influence of PEEP on cerebral perfusion in patients without
intracranial pathology, because ICP is not ordinarily moni-
tored, if cerebral autoregulation functions normally, CBF is
preserved. The use of noninvasive methods to assess ICP,

such as TCD and optic nerve sheath diameter measurement,
indicates that a PEEP of 8 cm H,O exerts minimal impact
on ICP [26, 27]. In addition, the influence of PEEP on cer-
ebral perfusion and oxygenation has been investigated using
TCD and NIRS in patients without brain injury undergoing
elective surgical procedures. While opinions diverge on the
impact of airway pressure on CBF [28, 29], it is generally
accepted that local oxygenation is preserved during airway
pressure application in healthy volunteers [30]. Conversely,
in patients with brain injuries, elevated PEEP may increase
ICP and reduce CPP due to diminished autoregulatory
capacity [31, 32]. Our results indicate that changes in PEEP
did not reduce cerebral StO, or CBV, suggesting that clini-
cally used PEEP levels have little impact on cerebral perfu-
sion in preterm and term newborns without brain injuries,
because their effect on cardiac output remains within the
limits of the autoregulatory capacity. Consequently, in new-
borns with limited autoregulatory capacity, such as ELBWIs,
hypoxic ischemic encephalopathy and hydrocephalus, it
remains uncertain whether high PEEP does not impact cer-
ebral perfusion [33-35].

This study has some clinical implications. Various
strategies for determining bedside PEEP settings in adults
include volumetric capnography, transpulmonary pressure
measurements, and imaging techniques such as computed
tomography or electrical impedance tomography [36].
However, research on PEEP titration in neonates remains
limited. We propose that combining conventional respira-
tory monitoring, such as pulse oximetry, with the AESCU-
LON mini® may help optimise PEEP settings in neonates.

@ Springer
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Additionally, our findings suggest that while increasing
PEEP reduces CO, cerebral perfusion is preserved. In this
study, we observed an approximate 9% reduction in CO and
SV, which was attributable to the elevated PEEP. Neverthe-
less, these values remained within the 25th to 75th percen-
tile range of the gestational age-specific reference values
previously documented [37]. Further investigation is war-
ranted to ascertain their clinical significance in this regard.
However, several previous studies have indicated that high
PEEP induced a reduction in intestinal blood flow or renal
failure [38—40]. Therefore, it may be advisable to avoid the
use of high PEEP, particularly in instances of circulatory
failure or conditions that impair organ perfusion, such as
necrotising enterocolitis and prerenal failure. In situations
requiring high PEEP, careful monitoring of gastrointestinal
symptoms and urinary output is essential.

This study has several limitations. First, the reduction
in CO may be caused not only by PEEP but also by mean
airway pressure or peak inspiratory pressure. In the future,
it will be necessary to change only PEEP while maintaining
minute ventilation, to clarify the isolated effect of PEEP.
Second, the median days at measurement were 3 days for
term infants and 4 days for preterm infants, closely align-
ing with the transitional period. Considering the intricate
hemodynamic changes that occur in newborns after birth,
these findings may not be applicable beyond this timeframe.
Third, the penetration depth of the NIRS signal is limited to
the cerebral cortex, thereby excluding information on deeper
cerebral structures. Beyond the use of NIRS, it is impera-
tive to evaluate cerebral perfusion using a more extensive
and comprehensive multimodal hemodynamic assessment.
Finally, this study was conducted at a single centre with a
relatively small and heterogeneous sample, including both
term and preterm infants who underwent intubation for vari-
ous reasons. In addition, we assessed the impact of PEEP
only for 10 min in neonates with respiratory stability, and
did not account for factors such as sedative or vasopressor
use, and blood glucose or haemoglobin levels which may
influence cerebral perfusion [41, 42]. Future research should
involve larger, more homogeneous cohorts to refine PEEP
recommendations for mechanically ventilated infants.

Conclusion

This pilot study demonstrated that PEEP used in this study
reduced CO without affecting cerebral perfusion in pre-
term and term newborns. Although clinically used PEEP
levels have little impact on cerebral perfusion without
brain injurious, high PEEP may reduce blood circulation
to organs outside the brain. Future research is warranted
to refine PEEP recommendations for mechanically venti-
lated infants.
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